Product Code Database
Example Keywords: radiant silvergun -leather $63-137
barcode-scavenger
   » » Wiki: Tide Pool
Tag Wiki 'Tide Pool'.
Tag

A tide pool or rock pool is a shallow pool of that forms on the rocky . These pools typically range from a few inches to a few feet deep and a few feet across. Many of these pools exist as separate bodies of only at , as seawater gets trapped when the tide recedes. Tides are caused by the of the sun and moon. A tidal cycle is usually about 25 hours and consists of two high tides and two low tides.

Tide pool are home to especially adaptable , like snails, barnacles, mussels, anemones, urchins, sea stars, crustaceans, and small fish, as well as seaweed. Inhabitants must be able to cope with constantly changing water levels, water temperatures, , and oxygen content. At low tide, there is the risk of predators like seabirds. These pools have engaged the attention of and , as well as essayists: wrote in The Log from the Sea of Cortez, "It is advisable to look from the tide pool to the stars and then back to the tide pool."

Tidal pools are theorized to be one possible environment where , with the chemical reactions needed for life's beginnings potentially occurring in these shallow, dynamic environments. Additionally, the conditions within tidal pools, such as the presence of fluctuating water levels and unique chemical concentrations, may have also driven the evolution of land-walking vertebrates from ancient fish approximately 400 million years ago.

Some examples have been artificially augmented to enable safer swimming (for example without waves or without sharks) in seawater at certain states of the tide.


Zones
The rocky shoreline exhibits distinct zones with unique characteristics. These zones are created by the tidal movements of water along the rocky shores from high to low-tide. They are:

  • The supralittoral zone or splash zone: area above the high-tide mark, which is virtually a terrestrial environment. Occasionally gets splashed, but never gets covered by the ocean.
  • The intertidal fringe: area around the high-tide mark.
  • The intertidal or littoral zone: area between the high and low-tide marks. Can be further divided into high, mid, and low intertidal zones, which are explained below in more depth.
  • The sublittoral or subtidal zone: area below the low-tide mark.

The presence and abundance of flora and fauna vary between zones along the rocky shore. This is due to niche adaptations in response to the varying tides and solar exposure.

Tide pools exist in the intertidal zone (the area within the ), which is submerged by the sea at and during . At other times, the rocks may undergo other extreme conditions, such as baking in the or being exposed to cold winds. Few can survive such harsh conditions.


High Tide Zone
The high tide zone is during each high tide, which occurs once or twice daily. Organisms must survive , , and long exposure to the sun and open air. This zone is predominantly inhabited by and , such as , , , , , and . Marine provide shelter for and . The same waves and currents that make life in the high tide zone difficult bring food to and other intertidal organisms.


Mid Tide Zone
This zone is constantly covered and uncovered by water, so its inhabitants have adapted to surviving in these conditions. More plants and animals live here, compared to the high tide zone, because they are not exposed to drying conditions for so long. During low tide, anemones close up and mussels close their shells to keep in moisture. They reopen when the tide returns and brings them food.


Low Tide Zone
This area is mostly submerged and is exposed only during unusually low tide. It usually teems with life and has far more marine vegetation, especially seaweeds. Organisms in this zone do not have to be as well adapted to drying out and temperature extremes. Low tide zone organisms include , anemones, brown seaweed, chitons, crabs, green algae, hydroids, , , mussels, and sometimes even small such as fish. Seaweeds provide shelter for many animals, like sea slugs and urchins that are too fragile for other zones. These creatures can grow to larger sizes because there is more available energy and better water coverage: the water is shallow enough to allow additional sunlight for activity, with almost normal levels of . This area is also relatively protected from large because of the wave action and shallow water.


Marine life
Tide pools provide a home for many organisms such as , and . Inhabitants deal with a frequently changing environment: fluctuations in water , salinity, and content. Hazards include , strong , exposure to midday sun and predators.

can dislodge mussels and draw them out to sea. pick up and drop to break them open. Sea stars prey on mussels and are eaten by gulls themselves. Black bears are known to sometimes feast on intertidal creatures at low tide. Although tide pool organisms must avoid getting washed away into the , drying up in the sun, or being eaten, they depend on the tide pool's constant changes for food. Tide pools contain complex that can vary based on the climate.


Fauna
The Anthopleura elegantissima reproduces clones of itself through a process of longitudinal fission, in which the animal splits into two parts along its length. The sea anemone often engages in territorial fights. The white tentacles (acrorhagi), which contain stinging cells, are for fighting. The sea anemones sting each other repeatedly until one of them moves.

Some species of sea stars can regenerate lost arms. Most species must retain an intact central part of the body to be able to regenerate, but a few can regrow from a single ray. The regeneration of these stars is possible because the vital organs are in the arms.

Sea urchins ("") move around tide pools with tube like feet. Different species of have different colors, and many are seen in tide pools. With spines, some filled with poison like with "Toxopnesutes pileolus", that protect them from predators they feed almost undisturbed in tide pools. and other microorganism are the food sources that attract them to the tide pools.

The presence of the California mussel increases the supply of inorganic nitrogen and phosphorus in coastal marine tide pools which allows the ecosystem the nutrients to be more productive. The shell of a California mussel is primarily composed of and which are both polymorphs of Calcium carbonate. Climate change and ocean acidification has led to a decrease in these amounts important compounds in California Mussel shells over many years.

and live in the splash zone. Different live at very tightly constrained elevations, with tidal conditions precisely determining the exact height of an assemblage relative to sea level. The intertidal zone is periodically exposed to sun and wind, conditions that can cause barnacles to become . These animals, therefore, need to be well adapted to water loss. Their shells are impermeable, and they possess two plates which they slide across their mouth opening when not feeding. These plates also protect against predation.

Many species of are commonly found in tide pool environments. The long-wristed hermit crab (Pagurus longicarpus) has been found to become stranded in tide pools and are forced to inhabit gastropod shells in response to the rapidly changing temperature of the pools. Hermit crabs of different or the same species compete for the snail shells that are available.

Many fish species can live in tidepools. Tidepool fishes are those inhabiting the intertidal zone during part or the entirety of their life cycle, including residents displaying morphological, physiological and behavioral adaptations to withstand the fluctuating environment and non-residents that use the intertidal as juvenile habitat, feeding or refuge ground, or as transient space between nearshore areas. Tidepools fishes can be classified as residents and non-residents (sometimes called transients or visitors).

(1999). 9780123560407
Residents are those that spend the whole lifetime in the tidepools. Non-resident species are commonly divided into two groups: secondary residents (also known as partial residents or opportunists) and transients (which can be further classified as tidal and seasonal transients). Secondary residents are species that spend only a portion of their life history in tidepools, typically during their juvenile stage, before moving on to adult subtidal habitats. Transients, on the other hand, may temporarily inhabit tidepools for various reasons such as foraging, seeking refuge, or transit. Unlike residents, transients lack specialized adaptations for intertidal life and typically occupy large tidepools for a relatively short period, ranging from a single tidal cycle to a few months. The is a species of fish that is named for its tide pool habitat. The Tidepool Sculpin has been found to show preferences for certain tide pools and will return to their tide pool of choice after being removed from it. This is a behavior known as Homing (biology). These fish crawl on the floor of tide pools using a back and forth movement of their tail fin and a rotating motion of their pectoral fins.

Multiple species of Amphipods () can be found in coastal tide pools. These small crustaceans provide an important food source for predator species as well as limiting the growth of algae attached to vegetation.


Flora
Sea palms ( ) look similar to miniature . They live in the middle to upper intertidal zones in areas with greater wave action. High wave action may increase nutrient availability and moves the blades of the , allowing more sunlight to reach the organism so that it can photosynthesize. In addition, the constant wave action removes competitors, such as the mussel species Mytilus californianus.

Recent studies have shown that Postelsia grows in greater numbers when such competition exists; a control group with no competition produced fewer offspring than an experimental group with mussels; from this it is thought that the mussels provide protection for the developing .

Alternatively, the mussels may prevent the growth of competing such as or , allowing Postelsia to grow freely after wave action has eliminated the mussels.

Coralline algae "Corallinales" are predominant features of mid and low intertidal . Calcium carbonate (CaCO3) takes the form of calcite in their cell walls providing them with a hard outer shell. This shell protects from herbivores and due to lack of water and evaporation. Many forms of the Coralline algae bring herbivores, such as mollusks "Notoacmea", to the tide pools during high tides, increasing the biomass of the area. Once low tides comes, these herbivores are exposed to carnivores in the areas, fueling the food web.

File:Anthopleura sola is consuming Velella velella.jpg|A starburst anemone () consuming a by-the-wind-sailor (), a blue File:Postelsia palmaeformis 2.jpg|alt=Photo of speckled rocks, and various irregularly-shaped animals| Postelsia palmaeformis at low tide in a tide pool File:Starfishmussel.jpg|alt=Photo of five-legged approximately radially-symmetric animal lying on rock with shelled animal in its mouth, which is in the center of its body|Sea star, Pisaster ochraceus consuming a mussel in tide pools File:Close-up of clone war of sea anemones.jpg|Sea anemones, engaged in a battle for territory File:Tide pool in fog at extreme low tide, Kachemak Bay.jpg|Temporary tide pool at an extreme low tide, , Alaska


Coastal predators
Tide pools are often surrounded by coastal predators who feed on tide pool flora and fauna. These predators play an important role in the tide pool and create competition for resources.


See also


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time